题目内容

设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式的解集是

A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2)
C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

D

解析试题分析:解:因为当x>0时,有恒成立,即[]′<0恒成立,所以
在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(-∞,-2)内恒有f(x)>0;在(-2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(-∞,-2)∪(0,2).故选D.
考点:函数单调性与导数
点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网