题目内容
【题目】极坐标与参数方程
已知曲线:(为参数),:(为参数).
(1)将、的方程化为普通方程;
(2)若与交于M、N,与x轴交于P,求的最小值及相应的值.
【答案】(1)x2+12y2=1,(2),
【解析】
(1)利用sin2θ+cos2θ=1,即可将曲线化为普通方程;消去参数,即可得出的普通方程.
(2)C2与x轴交于P,把C2的参数方程代入曲线化为普通方程,整理等关于t的一元二次方程,利用直线参数方程的几何意义,得|PM||PN|=﹣t1t2,进而求出最小值.
解:(1)由曲线C1:(θ为参数),利用sin2θ+cos2θ==1,化为x2+12y2=1.
由C2:(t为参数),消去参数t可得:.
(2)C2与x轴交于P,
把C2:(t为参数).代入曲线C1可得:(2+22sin2α)t2+﹣1=0.
∴|PM||PN|=﹣t1t2=≥,
∴|PM||PN|的最小值,此时.
【题目】已知函数.
()当时,求此函数对应的曲线在处的切线方程.
()求函数的单调区间.
()对,不等式恒成立,求的取值范围.
【答案】();()见解析;()当时, ,当时
【解析】试题分析:(1)利用导数的意义,求得切线方程为;(2)求导得,通过, , 分类讨论,得到单调区间;(3)分离参数法,得到,通过求导,得, .
试题解析:
()当时, ,
∴, ,
,∴切线方程.
()
.
令,则或,
当时, 在, 上为增函数.
在上为减函数,
当时, 在上为增函数,
当时, 在, 上为单调递增,
在上单调递减.
()当时, ,
当时,由得
,对恒成立.
设,则
,
令得或,
极小 |
,∴, .
点睛:本题考查导数在函数综合题型中的应用。含参的函数单调性讨论,考查学生的分类讨论能力,本题中,结合导函数的形式,分类讨论;含参的恒成立问题,一般采取分离参数法,解决恒成立。
【题型】解答题
【结束】
20
【题目】已知集合,集合且满足:
, , 与恰有一个成立.对于定义 .
()若, , , ,求的值及的最大值.
()取, , , 中任意删去两个数,即剩下的个数的和为,求证: .
()对于满足的每一个集合,集合中是否都存在三个不同的元素, , ,使得恒成立,并说明理由.