ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬Âú×ã|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=$\sqrt{3}$£¬$\overrightarrow{a}$+$\overrightarrow{b}$=£¨$\sqrt{3}$£¬1£©£¬ÔòÏòÁ¿ $\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇÊÇ$\frac{¦Ð}{2}$£®·ÖÎö ÉèÏòÁ¿ $\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇÊǦȣ¬¸ù¾Ý|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{{£¨\overrightarrow{a}+\overrightarrow{b}£©}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=2£¬ÇóµÃcos¦È µÄÖµ£¬¿ÉµÃ¦ÈµÄÖµ£®
½â´ð ½â£ºÉèÏòÁ¿ $\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇÊǦȣ¬Ôò$\overrightarrow{a}•\overrightarrow{b}$=1¡Á$\sqrt{3}$¡Ácos¦È=$\sqrt{3}$cos¦È£¬
¸ù¾Ý|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{{£¨\overrightarrow{a}+\overrightarrow{b}£©}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=$\sqrt{1-2\sqrt{3}cos¦È+3}$=2£¬
¿ÉµÃcos¦È=0£¬¡à¦È=$\frac{¦Ð}{2}$£¬
¹Ê´ð°¸Îª£º$\frac{¦Ð}{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ½¸öÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬ÇóÏòÁ¿µÄÄ££¬¸ù¾ÝÈý½Çº¯ÊýµÄÖµÇó½Ç£¬ÊôÓÚ»ù´¡Ì⣮
A£® | xÖá¶Ô³Æ | B£® | Ôµã¶Ô³Æ | C£® | yÖá¶Ô³Æ | D£® | Ö±Ïßx=$\frac{¦Ð}{2}$¶Ô³Æ |
A£® | ³ä·Ö·Ç±ØÒªÌõ¼þ | B£® | ±ØÒª·Ç³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ |
A£® | $\frac{1}{5}$ | B£® | -1 | C£® | 1 | D£® | -2 |