题目内容
【题目】某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别用表示和的函数关系式,并给出定义域;
(2)怎样设计能使取得最大值,并求出最大值.
【答案】(1),其定义域是.
(2)设计,时,运动场地面积最大,最大值为2430平方米.
【解析】
(1)总面积为,且,则,(其中,从而运动场占地面积为,代入整理即得;
(2)由(1)知,占地面积,由基本不等式可得函数的最大值,以及对应的的值.
解:(1)由已知,,其定义域是.
,
,,
,其定义域是.
(2),
当且仅当,即时,上述不等式等号成立,
此时,,,.
答:设计,时,运动场地面积最大,最大值为2430平方米.
【题目】2019年的流感来得要比往年更猛烈一些据四川电视台“新闻现场”播报,近日四川省人民医院一天的最高接诊量超过了一万四千人,成都市妇女儿童中心医院接诊量每天都在九千人次以上这些浩浩荡荡的看病大军中,有不少人都是因为感冒来的医院某课外兴趣小组趁着寒假假期空闲,欲研究昼夜温差大小与患感冒人数之间的关系,他们分别到成都市气象局与跳伞塔社区医院抄录了去年1到6月每月20日的昼夜温差情况与患感冒就诊的人数,得到如下资料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数人 | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程;
若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考公式: ,