题目内容

6.已知函数y=$\left\{\begin{array}{l}{1(x=1)}\\{2(x=2)}\\{f(x-2)+f(x-1)(x∈{N}^{*},x≥3)}\end{array}\right.$,你能求出f(3),f(4),f(5),f(6)吗?

分析 根据已知中f(x)=$\left\{\begin{array}{l}1(x=1)\\ 2(x=2)\\ f(x-2)+f(x-1)(x∈{N}^{*},x≥3)\end{array}\right.$,将x=3,4,5,6依次代入,可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}1(x=1)\\ 2(x=2)\\ f(x-2)+f(x-1)(x∈{N}^{*},x≥3)\end{array}\right.$,
∴f(3)=f(1)+f(2)=3,
f(4)=f(2)+f(3)=5,
f(5)=f(3)+f(4)=8,
f(6)=f(4)+f(5)=13.

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网