题目内容

证明:“0≤a≤
16
”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数”的充分不必要条件.
分析:利用充分性和必要性的定义证明.
解答:解:当a=0时,f(x)=ax2+2(a-1)x+2=-2x+2,此时函数在定义域上单调递减,所以满足条件.

当a≠0时,要使函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数,
则有
a>0
-
2(a-1)
2a
≥4
,即
a>0
a≤
1
5
,所以0≤a≤
1
5

综上满足函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的等价条件是0≤a≤
1
5

所以:“0≤a≤
1
6
”是“0≤a≤
1
5
”成立的充分不必要条件,
即:“0≤a≤
1
6
”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数”的充分不必要条件.
点评:本题主要考查充分条件和必要条件的判断,先求出命题的等价条件是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网