题目内容

如图,斜三棱柱ABC-A1B1C1中,面AA1C1C是菱形,∠ACC1=60°,侧面ABB1A1⊥AA1C1C,A1B=AB=AC=1.求证:
(1)AA1⊥BC1
(2)求点A1到平面ABC的距离.
分析:(1)要证AA1⊥BC1.只需证AA1⊥面BDC1,只需证AA1垂直于面BDC1内的两条相交直线,设AA1中点为D,根据A1B=AB,可得BD⊥AA1,利用侧面ABB1A1⊥AA1C1C,可得BD⊥面AA1C1C.根据△ACC1为正三角形,AC1=C1A1,可得C1D⊥AA1,从而得证;
(2)由(1),有BD⊥C1D,BC1⊥CC1,CC1⊥面C1DB,设点A1到平面ABC的距离为h,利用等面积有
1
3
hS△ABC=VB-CAC1=VB-CDC1
=VC-C1DB,从而可求点A1到平面ABC的距离.
解答:(1)证明:设AA1中点为D,连BD,CD,C1D,AC1
因为A1B=AB,所以BD⊥AA1.--------------------------2分
因为侧面ABB1A1⊥AA1C1C,所以BD⊥面AA1C1C.----------4分
又△ACC1为正三角形,AC1=C1A1,所以C1D⊥AA1.------6分
所以AA1⊥面BDC1
所以AA1⊥BC1.----------------------------8分
(2)解:由(1),有BD⊥C1D,BC1⊥CC1,CC1⊥面C1DB
设点A1到平面ABC的距离为h,则
1
3
hS△ABC=VB-CAC1=VB-CDC1
=VC-C1DB
因为BD=C1D=
3
2
,CC1=1
VC-C1DB=
1
3
CC1×SC1DB
=
1
8

CC1=1,BC1=
6
2

BC=
10
2

∵AB=AC=1,
S△ABC=
15
8

h=
15
5

即点A1到平面ABC的距离为
15
5
.----14分
点评:本题以三棱柱为载体,考查线面垂直的判定与性质,考查点面距离的求法,解题的关键是转换底面,利用体积相等求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网