题目内容
如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2
,则EF的长为( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231831025443564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102512326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231831025443564.png)
A.![]() | B.![]() | C.![]() | D.![]() |
C
分析:Rt△CBP中,由勾股定理求得⊙P的半径BP,再由直角三角形CBP和CEF相似,对应边成比例得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102637552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102653536.png)
解:设⊙P 的半径为 r,Rt△CBP中,由勾股定理得 8+r2=(2+r)2,
∴r=1. 由Rt△CBP和R t△CEF相似可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102637552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102653536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102700437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102715532.png)
∴EF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823183102590345.png)
故答案为:C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目