题目内容

在直角坐标系中,已知点,点三边围成的区域(含边界)上
(1)若,求
(2)设,用表示,并求的最大值.

(1),(2)1.

解析试题分析:(1)本小题中因为思路一即化为坐标运算:从而求得x,y,即可求出其模长,思路二先化向量运算,再化坐标运算:即可求得模长;(2)本小题因为所以,两式相减得,m-n=y-x,令y-x=t,以下把问题转化为目标函数为t的线性规划问题加以解决.
试题解析:(1)解法一:
解得x=2,y=2,即所以
解法二:,所以所以
(2),两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.
考点:平面向量的线性运算与坐标运算;线性规划问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网