题目内容
在直角坐标系中,已知点,点在三边围成的区域(含边界)上
(1)若,求;
(2)设,用表示,并求的最大值.
(1),(2)1.
解析试题分析:(1)本小题中因为思路一即化为坐标运算:从而求得x,y,即可求出其模长,思路二先化向量运算,再化坐标运算:即可求得模长;(2)本小题因为所以则,两式相减得,m-n=y-x,令y-x=t,以下把问题转化为目标函数为t的线性规划问题加以解决.
试题解析:(1)解法一:又
解得x=2,y=2,即所以
解法二:则,所以所以
(2),两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.
考点:平面向量的线性运算与坐标运算;线性规划问题.
练习册系列答案
相关题目
若a,b∈R,且a2+b2=10,则a-b的取值范围是 ( )
A. | B. |
C. | D. |