题目内容
(08年湖南卷理)已知椭圆(a>b>0)的右焦点为F,右准线为,离心率e=
过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于 .
【答案】
【解析】
(08年湖南卷理)已知函数
(1)若a>0,则的定义域是 ;
(2) 若在区间上是减函数,则实数a的取值范围是 .
(08年湖南卷理)已知变量x、y满足条件则的最大值是( )
A.2 B.5 C.6 D.8
(08年湖南卷理)(本小题满分13分)
若A、B是抛物线上的不同两点,弦AB(不平行于y轴)的垂直平分线与
x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当时,点
存在无穷多条“相关弦”.给定.
(I)证明:点的所有“相关弦”的中点的横坐标相同;
(II) 试问:点的“相关弦”的弦长中是否存在最大值?
若存在,求其最大值(用x0表示):若不存在,请说明理由.
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断
它是否会进入警戒水域,并说明理由.