题目内容
(08年湖南卷理)(本小题满分13分)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断
它是否会进入警戒水域,并说明理由.
解: (I)如图,AB=40,AC=10,
由于,所以cos=
由余弦定理得BC=
所以船的行驶速度为(海里/小时).
(II)解法一 如图所示,以A为原点建立平面直角坐标系,
设点B、C的坐标分别是B(x1,y2), C(x1,y2),
BC与x轴的交点为D.
由题设有,x1=y1= AB=40,
x2=ACcos,
y2=ACsin
所以过点B、C的直线l的斜率k=,直线l的方程为y=2x-40.
又点E(0,-55)到直线l的距离d=
所以船会进入警戒水域.
解法二: 如图所示,设直线AE与BC的延长线相交于点Q.
在△ABC中,由余弦定理得,
==.
从而
在中,由正弦定理得,
AQ=
由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.
过点E作EP BC于点P,则EP为点E到直线BC的距离.
在Rt中,PE=QE?sin
=
所以船会进入警戒水域.
练习册系列答案
相关题目