题目内容
设角A,B,C是△ABC的三个内角,已知向量m |
n |
m |
n |
(Ⅰ)求角C的大小;
(Ⅱ)若向量
s |
t |
B |
2 |
s |
t |
分析:(Ⅰ)根据
⊥
推断出
•
=0,利用向量的基本运算求得sin2C=sin2A+sin2B-sinAsinB,利用正弦定理把角的正弦转化成边,代入余弦定理求得cosC的值,进而求得C.
(Ⅱ)根据
和
的坐标可求得|
+
|2的表达式,然后利用二倍角公式化简整理,利用A的范围和正弦函数的单调性求得|
+
|2的范围,进而求得|
+
|的取值范围.
m |
n |
m |
n |
(Ⅱ)根据
s |
t |
s |
t |
s |
t |
s |
t |
解答:解:(Ⅰ)由题意得
•
=(sin2A-sin2C)+(sin2B-sinAsinB)=0
即sin2C=sin2A+sin2B-sinAsinB
由正弦定理得c2=a2+b2-ab
再由余弦定理得cosC=
=
∵0<C<π,∴C=
(Ⅱ)∵
+
=(cosA,2cos2
-1)=(cosA,cosB)
∴|
+
|2=cos2A+cos2B=cos2A+cos2(
-A)
=
+
=
cos2A-
sin2A+1
=-
sin(2A-
)+1
∵0<A<
,∴-
<2A-
<
∴-
<sin(2A-
)≤1
所以
≤|
+
|2<
,故
≤|
+
|<
.
m |
n |
即sin2C=sin2A+sin2B-sinAsinB
由正弦定理得c2=a2+b2-ab
再由余弦定理得cosC=
a2+b2-c2 |
2ab |
1 |
2 |
∵0<C<π,∴C=
π |
3 |
(Ⅱ)∵
s |
t |
B |
2 |
∴|
s |
t |
2π |
3 |
=
1+cos2A |
2 |
1+cos(
| ||
2 |
1 |
4 |
| ||
4 |
=-
1 |
2 |
π |
6 |
∵0<A<
2π |
3 |
π |
6 |
π |
6 |
7π |
6 |
∴-
1 |
2 |
π |
6 |
所以
1 |
2 |
s |
t |
5 |
4 |
| ||
2 |
s |
t |
| ||
2 |
点评:本题主要考查了正弦定理和余弦定理的应用,向量的基本运算,三角函数的基本公式.综合考查了学生对基础知识整体把握.
练习册系列答案
相关题目