题目内容

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,点E是C1D1的中点.
(1)求证:DE⊥平面BCE;
(2)求二面角A﹣EB﹣C的大小.

【答案】(1)证明:建立如图所示的空间直角坐标系,
则D(0,0,0),E(0,1,1),
B(1,2,3),C(0,2,0),
=(0,1,1),=(﹣1,﹣1,1),=(﹣1,0,0),
=0,=0,
∴DE⊥BE,DE⊥BC,
∵BE平面BCE,BC平面BCE,BE∩BC=B,
∴DE⊥平面BCE.
(2)解:设平面AEB的法向量=(x,y,z),

取x=1,得=(1,0,1),
∵DE⊥平面BCE,∴=(0,1,1)是平面BCE的法向量,
∵cos<,>==
∴二面角A﹣EB﹣C的大小为120°.

【解析】(1)建立如图所示的空间直角坐标系,利用向量法能证明DE⊥平面BCE.
(2)求出平面AEB的法向量和平面BCE的法向量,再利用向量法求出二面角A﹣EB﹣C的大小.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网