题目内容
6.若函数f(x)在x=1取到极值,则f′(1)=0.分析 根据函数极值和导数之间的关系进行求解即可.
解答 解:若函数f(x)在x=1取到极值,
则f′(1)=0,
故答案为:0.
点评 本题主要考查导数的应用,根据函数极值和导数之间的关系是解决本题的关键.比较基础.
练习册系列答案
相关题目
15.已知数列{an}、{bn}、{cn}的通项公式分别为:an=n,bn=n(n+1),cn=n(n+1)(n+2),数列{an},{bn}的前n项和分别为S1(n),S2(n),观察下表:
发现S1(n)=$\frac{1}{2}$bn,并可用下面方法证明:
因为ak=k=$\frac{1}{2}[k(k+1)-(k-1)k]$,k=1,2,…n,
所以S1(n)=a1+a2+…an=1+2+…+n=$\frac{1}{2}{(1×2-0×1)+(2×3-1×2)…+[n(n+1)-(n-1)n]}$=$\frac{1}{2}n(n+1)=\frac{1}{2}{b}_{n}$.
(1)指出S2(n)与cn的关系,并类比上面方法证明你的结论;
(2)求和Tn=12+22+…+n2.
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | … |
an | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | … |
S1(n) | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | … |
bn | 2 | 6 | 12 | 20 | 30 | 42 | 56 | 72 | … |
因为ak=k=$\frac{1}{2}[k(k+1)-(k-1)k]$,k=1,2,…n,
所以S1(n)=a1+a2+…an=1+2+…+n=$\frac{1}{2}{(1×2-0×1)+(2×3-1×2)…+[n(n+1)-(n-1)n]}$=$\frac{1}{2}n(n+1)=\frac{1}{2}{b}_{n}$.
(1)指出S2(n)与cn的关系,并类比上面方法证明你的结论;
(2)求和Tn=12+22+…+n2.