题目内容
.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图4中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则 .
10
解:第一个有1个实心点,
第二个有1+1×3+1=5个实心点,
第三个有1+1×3+1+2×3+1=12个实心点,
第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,
…
第n个有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=+n个实心点
当n=5是由35个实心点,当an=145是,则解得n=10
第二个有1+1×3+1=5个实心点,
第三个有1+1×3+1+2×3+1=12个实心点,
第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,
…
第n个有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=+n个实心点
当n=5是由35个实心点,当an=145是,则解得n=10
练习册系列答案
相关题目