题目内容
已知P是双曲线x2 |
9 |
y2 |
16 |
F2M |
MP |
分析:假设P在右支,延长F2M交PF1于点A,由题意:MF2垂直PM,故|AM|=|MF2|,|PA|=|PF2|,因为|PF1|-|PF2|=|PF1|-|PA|=|F1A|=2a=6,O为|F1F2|中点,M为|AF2|中点,由此能够求出|OM|的值.
解答:解:假设P在右支,
延长F2M交PF1于点A,
由题意:MF2垂直PM,
故|AM|=|MF2|,|PA|=|PF2|,
∵|PF1|-|PF2|=|PF1|-|PA|=|F1A|=2a=6,
O为|F1F2|中点,M为|AF2|中点,
∴|OM|=
|AF1|=3.
故答案为:3.
延长F2M交PF1于点A,
由题意:MF2垂直PM,
故|AM|=|MF2|,|PA|=|PF2|,
∵|PF1|-|PF2|=|PF1|-|PA|=|F1A|=2a=6,
O为|F1F2|中点,M为|AF2|中点,
∴|OM|=
1 |
2 |
故答案为:3.
点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理选用.
练习册系列答案
相关题目