题目内容
已知两个平面向量满足,,且与的夹角为,则__________.
正方体的棱长为a,分别是棱的中点,以为底面作直三棱柱(侧棱与底面垂直的三棱柱叫直三棱柱),若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个三棱柱的高为( )
A. a B. a
C. a D. a
已知直角梯形中,是边长为2的等边三角形,.沿将折起,使至处,且;然后再将沿折起,使至处,且面面,和在面的同侧.
(Ⅰ) 求证:平面;
(Ⅱ) 求平面与平面所构成的锐二面角的余弦值.
已知集合,则( )
A. B. C. D.
已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:
若抽取学生人,成绩分为(优秀),(良好),(及格)三个等次,设分别表示数学成绩与地理成绩,例如:表中地理成绩为等级的共有(人),数学成绩为等级且地理成绩为等级的共有8人.已知与均为等级的概率是.
(1)设在该样本中,数学成绩的优秀率是,求的值;
(2)已知,,求数学成绩为等级的人数比等级的人数多的概率.
过双曲线的右焦点作圆的切线(切点为),交轴于点,若为线段的中点,则双曲线的离心率为( )
A. B. C. 2 D.
若集合,且,则集合可能是( )
斐波拉契数列0,1,1,2,3,5,8…是数学史上一个著名的数列,定义如下:,某同学设计了—个求解斐波拉契数列前15项和的程序框图,那么在空白矩形框和判断框内应分别填入的语句是( )
【题目】比较大小:403(6) 217(8)