题目内容
记an为(1+x)n+1的展开式中含xn-1项的系数,则
(
+
+…+
)=______.
lim |
n→∞ |
1 |
a1 |
1 |
a2 |
1 |
an |
由题意可得 an=
=
=
,
∴
=
=2(
-
),
∴
(
+
+…+
)=
2[(
-
)+(
-
)+(
-
)+…+(
-
)]=
2(1-
)=2,
故答案为:2.
C | n-1n+1 |
C | 2n+1 |
n(n+1) |
2 |
∴
1 |
an |
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴
lim |
n→∞ |
1 |
a1 |
1 |
a2 |
1 |
an |
lim |
n→∞ |
1 |
1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
lim |
n→∞ |
1 |
n+1 |
故答案为:2.

练习册系列答案
相关题目