ÌâÄ¿ÄÚÈÝ
¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡Ê£¨0£¬+¡Þ£©£¬Èç¹ûa£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬ÄÇôf£¨a£©£¬f£¨b£©£¬f£¨c£©Ò²ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬Ôò³Æº¯Êýf£¨x£©Îª¡°±£Èý½ÇÐκ¯Êý¡±£®¶ÔÓÚº¯Êýy=g£¨x£©£¬x¡Ê[0£¬+¡Þ£©£¬Èç¹ûa£¬b£¬cÊÇÈÎÒâµÄ·Ç¸ºÊµÊý£¬¶¼ÓÐg£¨a£©£¬g£¨b£©£¬g£¨c£©ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬Ôò³Æº¯Êýg£¨x£©Îª¡°ºãÈý½ÇÐκ¯Êý¡±£®
£¨¢ñ£©ÅжÏÈý¸öº¯Êý¡°f1£¨x£©=x£¬f2£¨x£©=
2x |
£¨¢ò£©Èôº¯Êýg(x)=
x2+kx+1 |
x2-x+1 |
£¨¢ó£©Èç¹ûº¯Êýh£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©ÉϵÄÖÜÆÚº¯Êý£¬ÇÒÖµÓòҲΪ£¨0£¬+¡Þ£©£¬ÊÔÖ¤Ã÷£ºh£¨x£©¼È²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¬Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
·ÖÎö£º£¨¢ñ£©²»·ÁÉèa¡Üb¡Üc£¬ÓÉa+b£¾c£¬ÄÜÍƳöf1£¨a£©+f1£¨b£©£¾c=f1£¨c£©£¬¿ÉµÃf1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
ͬÀí¿ÉµÃf2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®Í¨¹ý¾Ù·´ÁÐa=3£¬b=3£¬c=5£¬f3£¨a£©+f3£¨b£©=f3£¨c£©£¬
¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨¢ò£©µ±x=0ʱ£¬g£¨x£©=1£»µ±x£¾0ʱ£¬g(x)=1+
£¬µ±k£¾-1ʱ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
ÓÉ¡°ºãÈý½ÇÐκ¯Êý¡±µÄ¶¨Ò壬1+1£¾k+2£¬k£¼0£¬¹Ê ÓÐ-1£¼k£¼0£®
µ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬½â
£¬µÃk£¾-
£¬ËùÒÔ£¬-
£¼k£¼-1£®
½«ÒÔÉÏÁ½¸ö·¶Î§È¡²¢¼¯£®
£¨¢ó£©ÒòΪ´æÔÚÕýʵÊýa£¬b£¬c£¬Ê¹µÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£®
ÓÉÖÜÆÚº¯ÊýµÄ¶¨Ò壬´æÔÚn£¾m£¾0£¬Ê¹µÃh£¨m£©=1£¬h£¨n£©=2£¬a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬µ«ÒòΪ
h£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬¹Êh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
h£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
ͬÀí¿ÉµÃf2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®Í¨¹ý¾Ù·´ÁÐa=3£¬b=3£¬c=5£¬f3£¨a£©+f3£¨b£©=f3£¨c£©£¬
¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
£¨¢ò£©µ±x=0ʱ£¬g£¨x£©=1£»µ±x£¾0ʱ£¬g(x)=1+
k+1 | ||
x+
|
ÓÉ¡°ºãÈý½ÇÐκ¯Êý¡±µÄ¶¨Ò壬1+1£¾k+2£¬k£¼0£¬¹Ê ÓÐ-1£¼k£¼0£®
µ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬½â
|
3 |
2 |
3 |
2 |
½«ÒÔÉÏÁ½¸ö·¶Î§È¡²¢¼¯£®
£¨¢ó£©ÒòΪ´æÔÚÕýʵÊýa£¬b£¬c£¬Ê¹µÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£®
ÓÉÖÜÆÚº¯ÊýµÄ¶¨Ò壬´æÔÚn£¾m£¾0£¬Ê¹µÃh£¨m£©=1£¬h£¨n£©=2£¬a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬µ«ÒòΪ
h£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬¹Êh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
h£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£®
½â´ð£º½â£º£¨¢ñ£©¶ÔÓÚf1£¨x£©=x£¬ËüÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
²»·ÁÉèa¡Üb¡Üc£¬Ôòf1£¨a£©¡Üf1£¨b£©¡Üf1£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf1£¨a£©+f1£¨b£©=a+b£¾c=f1£¨c£©£¬¹Êf1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨2·Ö£©
¶ÔÓÚf2(x)=
£¬ËüÔÚ£¨0£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
²»·ÁÉèa¡Üb¡Üc£¬Ôòf2£¨a£©¡Üf2£¨b£©¡Üf2£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf2(a)+f2(b)=
+
=
£¾
£¾
=f2£¨c£©£¬
¹Êf2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨4·Ö£©
¶ÔÓÚf3£¨x£©=3x2£¬È¡a=3£¬b=3£¬c=5£¬ÏÔÈ»a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪf3£¨a£©+f3£¨b£©=3¡Á£¨32+32£©£¼3¡Á52=f3£¨c£©£¬
ËùÒÔ£¬f3£¨a£©¡¢f3£¨b£©¡¢f3£¨c£©²»ÊÇÈý½ÇÐεÄÈý±ß³¤£¬¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨6·Ö£©
£¨¢ò£©¡ßg(x)=1+
£¬
¡àµ±x=0ʱ£¬g£¨x£©=1£» µ±x£¾0ʱ£¬g(x)=1+
£®
µ±k£¾-1ʱ£¬ÒòΪg(x)=1+
¡Ü1+
=k+2£¬
ËùÒÔ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
´Ó¶øµ±k£¾-1ʱ£¬g£¨x£©¡Ê[1£¬k+2]£¬ÓÉ1+1£¾k+2£¬µÃk£¼0£¬ËùÒÔ£¬-1£¼k£¼0£¨9·Ö£©
µ±k£¼-1ʱ£¬ÒòΪg(x)=1+
¡Ý1+
=k+2£¬
ËùÒÔ£¬g£¨x£©¡Ê[k+2£¬1£©£¬
´Ó¶øµ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬ÓÉ
£¬
µÃ k£¾-
£¬ËùÒÔ£¬-
£¼k£¼-1£¬
×ÛÉÏËùÊö£¬ËùÇókµÄÈ¡Öµ·¶Î§ÊÇ£º-
£¼k£¼0£®£¨11·Ö£©
£¨¢ó£©¢ÙÒòΪh£¨x£©µÄÖµÓòΪ£¨0£¬+¡Þ£©£¬¡à´æÔÚÕýʵÊýa£¬b£¬c£¬
ʹµÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬
ÏÔÈ»ÕâÑùµÄh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¨13·Ö£©
¢ÚÒòΪh£¨x£©ÊÇÖµÓòΪ£¨0£¬+¡Þ£©µÄÖÜÆÚº¯Êý£¬ËùÒÔ´æÔÚn£¾m£¾0£¬
ʹµÃh£¨m£©=1£¬h£¨n£©=2£¬
Éèh£¨x£©µÄ×îСÕýÖÜÆÚΪT£¨T£¾0£©£¬
Áîa=b=m+kT£¬c=n£¬ÆäÖÐk¡ÊN*£¬ÇÒk£¾
£¬
Ôòa+b£¾c£¬ÓÖÏÔÈ»b+c£¾a£¬c+a£¾b£¬ËùÒÔa£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪh£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬
ËùÒÔh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨16·Ö£©
²»·ÁÉèa¡Üb¡Üc£¬Ôòf1£¨a£©¡Üf1£¨b£©¡Üf1£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf1£¨a£©+f1£¨b£©=a+b£¾c=f1£¨c£©£¬¹Êf1£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨2·Ö£©
¶ÔÓÚf2(x)=
2x |
²»·ÁÉèa¡Üb¡Üc£¬Ôòf2£¨a£©¡Üf2£¨b£©¡Üf2£¨c£©£¬ÒòΪa+b£¾c£¬
ËùÒÔf2(a)+f2(b)=
2a |
2b |
(
|
2(a+b) |
2c |
¹Êf2£¨x£©ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨4·Ö£©
¶ÔÓÚf3£¨x£©=3x2£¬È¡a=3£¬b=3£¬c=5£¬ÏÔÈ»a£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪf3£¨a£©+f3£¨b£©=3¡Á£¨32+32£©£¼3¡Á52=f3£¨c£©£¬
ËùÒÔ£¬f3£¨a£©¡¢f3£¨b£©¡¢f3£¨c£©²»ÊÇÈý½ÇÐεÄÈý±ß³¤£¬¹Êf3£¨x£©²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨6·Ö£©
£¨¢ò£©¡ßg(x)=1+
(k+1)x |
x2-x+1 |
¡àµ±x=0ʱ£¬g£¨x£©=1£» µ±x£¾0ʱ£¬g(x)=1+
k+1 | ||
x+
|
µ±k£¾-1ʱ£¬ÒòΪg(x)=1+
k+1 | ||
x+
|
k+1 | ||||
2
|
ËùÒÔ£¬g£¨x£©¡Ê£¨1£¬k+2]£¬
´Ó¶øµ±k£¾-1ʱ£¬g£¨x£©¡Ê[1£¬k+2]£¬ÓÉ1+1£¾k+2£¬µÃk£¼0£¬ËùÒÔ£¬-1£¼k£¼0£¨9·Ö£©
µ±k£¼-1ʱ£¬ÒòΪg(x)=1+
k+1 | ||
x+
|
k+1 | ||||
2
|
ËùÒÔ£¬g£¨x£©¡Ê[k+2£¬1£©£¬
´Ó¶øµ±k£¼-1ʱ£¬g£¨x£©¡Ê[k+2£¬1]£¬ÓÉ
|
µÃ k£¾-
3 |
2 |
3 |
2 |
×ÛÉÏËùÊö£¬ËùÇókµÄÈ¡Öµ·¶Î§ÊÇ£º-
3 |
2 |
£¨¢ó£©¢ÙÒòΪh£¨x£©µÄÖµÓòΪ£¨0£¬+¡Þ£©£¬¡à´æÔÚÕýʵÊýa£¬b£¬c£¬
ʹµÃh£¨a£©=1£¬h£¨b£©=1£¬h£¨c£©=2£¬
ÏÔÈ»ÕâÑùµÄh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©²»ÊÇ¡°ºãÈý½ÇÐκ¯Êý¡±£¨13·Ö£©
¢ÚÒòΪh£¨x£©ÊÇÖµÓòΪ£¨0£¬+¡Þ£©µÄÖÜÆÚº¯Êý£¬ËùÒÔ´æÔÚn£¾m£¾0£¬
ʹµÃh£¨m£©=1£¬h£¨n£©=2£¬
Éèh£¨x£©µÄ×îСÕýÖÜÆÚΪT£¨T£¾0£©£¬
Áîa=b=m+kT£¬c=n£¬ÆäÖÐk¡ÊN*£¬ÇÒk£¾
n-2m |
2T |
Ôòa+b£¾c£¬ÓÖÏÔÈ»b+c£¾a£¬c+a£¾b£¬ËùÒÔa£¬b£¬cÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
µ«ÒòΪh£¨a£©=h£¨b£©=h£¨m£©=1£¬h£¨c£©=h£¨n£©=2£¬
ËùÒÔh£¨a£©£¬h£¨b£©£¬h£¨c£©²»ÊÇÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬
¹Êh£¨x£©Ò²²»ÊÇ¡°±£Èý½ÇÐκ¯Êý¡±£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²é¡°±£Èý½ÇÐκ¯Êý¡±¡¢¡°ºãÈý½ÇÐκ¯Êý¡±µÄ¶¨Ò壬º¯ÊýµÄµ¥µ÷ÐÔÓëÖÜÆÚÐÔ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿