题目内容

已知a=
lim
n→+∞
(
1
n2
+
2
n2
+…+
n
n2
),b=
lim
n→+∞
(1+
1
3
+
1
9
+…+
1
3n-1
+…)
,则a、b的值分别为______,c=
lim
n→+∞
an+bn
an+1+bn+1
=______.
1
n2
+
2
n2
+…+
n
n2
=
n(n+1)
2
n2
=
n+1
2n
,∴a=
lim
n→∞
n+1
2n
=
lim
n→∞
1+
1
n
2
=
1
2

∵1+
1
3
+
1
9
+…+
1
3n-1
=
1-
1
3n
1-
1
3
,∴b=
lim
n→∞
1-
1
3n
1-
1
3
=
3
2

an+bn
an+1+bn+1
=
1
2n
+(
3
2
)n
1
2n+1
+(
3
2
)n+1
=
1
3n
+1
1
2
×
1
3n
+
3
2

所以c=
lim
n→∞
1
3n
+1
1
2
×
1
3n
+
3
2
=
2
3

故答案为:
1
2
3
2
2
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网