ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªº¯Êýf£¨x£©=sin2¦Øx-2sin2¦Øx+1£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚΪ4¦Ð£¬Ôòº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£¨¡¡¡¡£©A£® | [$\frac{¦Ð}{2}$+2k¦Ð£¬$\frac{5¦Ð}{2}$+2k¦Ð]k¡ÊZ* | B£® | [-$\frac{3¦Ð}{4}$+2k¦Ð£¬$\frac{¦Ð}{4}$+2k¦Ð]k¡ÊZ* | ||
C£® | [$\frac{¦Ð}{2}$+4k¦Ð£¬$\frac{5¦Ð}{2}$+4k¦Ð]k¡ÊZ* | D£® | [-$\frac{3¦Ð}{4}$+4k¦Ð£¬$\frac{¦Ð}{4}$+4k¦Ð]k¡ÊZ* |
·ÖÎö Ê×ÏÈͨ¹ýÈý½ÇºãµÈ±ä»»°Ñº¯ÊýµÄ¹Øϵʽ±äÐγÉÕýÏÒÐͺ¯Êý£¬½øÒ»²½ÀûÓÃÖÜÆÚÇó³öº¯ÊýµÄ¹Øϵʽ£¬×îºóÀûÓÃÕûÌå˼ÏëÇó³öº¯ÊýµÄµ¥µ÷Çø¼ä£®
½â´ð ½â£ºº¯Êýf£¨x£©=sin2¦Øx-2sin2¦Øx+1
=sin2¦Øx+cos2¦Øx
=$\sqrt{2}$sin£¨2¦Øx+$\frac{¦Ð}{4}$£©
ÓÉÓÚº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚΪ4¦Ð£¬
ËùÒÔ£º$T=\frac{2¦Ð}{2¦Ø}=4¦Ð$
½âµÃ£º¦Ø=$\frac{1}{4}$£¬
ËùÒÔº¯ÊýµÄ½âÎöʽΪ£º$f£¨x£©=\sqrt{2}sin£¨\frac{1}{2}x+\frac{¦Ð}{4}£©$£¬
Á$\frac{¦Ð}{2}+2k¦Ð¡Ü\frac{1}{2}x+\frac{¦Ð}{4}¡Ü\frac{3¦Ð}{2}+2k¦Ð$£¬
½âµÃ£º$\frac{¦Ð}{2}+4k¦Ð¡Üx¡Ü\frac{5¦Ð}{2}+4k¦Ð$£¨k¡ÊZ£©£¬
ËùÒÔº¯ÊýµÄµ¥µ÷µÝ¼õÇø¼äΪ£º[$\frac{¦Ð}{2}+4k¦Ð£¬\frac{5¦Ð}{2}+4k¦Ð$]£¨k¡ÊZ£©£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£»Èý½Çº¯Êý¹ØϵʽµÄºãµÈ±ä»»£¬ÀûÓú¯ÊýµÄÖÜÆÚÇóº¯ÊýµÄ½âÎöʽ£¬ÀûÓÃÕûÌå˼ÏëÇóº¯ÊýµÄµ¥µ÷Çø¼ä£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®Èô½«Ò»¸öÖʵãËæ»úͶÈëÈçͼËùʾµÄ³¤·½ÐÎABCDÖУ¬ÆäÖÐAB=2BC=4£¬ÔòÖʵãÂäÔÚÒÔABΪֱ¾¶µÄ°ëÔ²ÄڵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£® | $\frac{¦Ð}{2}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{6}$ | D£® | $\frac{¦Ð}{8}$ |