题目内容
某班主任对全班50名学生进行了作业量多少的调查,数据如下表:认为作业多 | 认为作业不多 | 总数 | |
喜欢玩电脑游戏 | 18 | 9 | 27 |
不喜欢玩电脑游戏 | 8 | 15 | 23 |
总数 | 26 | 24 | 50 |
分析:根据表中所给的数据,代入求观测值的算式,求出观测值,把所求的观测值同临界值进行比较,得到喜欢玩电脑游戏与认为作业量的多少有关系的把握.
解答:解:由表中数据可知k2=
=
=5.05,
∵5.05>5.024,
∴有1-0.025=97.5%的把握说喜欢玩电脑游戏与认为作业量的多少有关系.
故答案为:97.5%.
50(18×15-8×9)2 |
26×24×27×23 |
1960200 |
387504 |
∵5.05>5.024,
∴有1-0.025=97.5%的把握说喜欢玩电脑游戏与认为作业量的多少有关系.
故答案为:97.5%.
点评:本题考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,数字运算的过程中数字比较多,不要出错.
练习册系列答案
相关题目
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,其中学习积极性高的同学中,积极参加班级工作的有18名,不太主动参加班级工作的有7名;学习积极性一般的同学中,积极参加班级工作的有6名,不太主动参加班级工作的有19名.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?
参考公式:K2统计量的表达式是:K2=
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?
参考公式:K2统计量的表达式是:K2=
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |