题目内容
【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:
(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过82.7分的毕业生可参加三家公司的面试.
用样本平均数作为的估计值,用样本标准差作为的估计值.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
附:若随机变量,则,.
【答案】(1)70,161;(2)317.
【解析】
(1)根据频率分布直方图,结合平均数和方差的计算公式即可容易求得;
(2)利用正态分布的概率求解,求得,再乘以,即可容易求得.
(1)由所得数据绘制的频率直方图,得:
样本平均数;
样本方差
;
(2)由(1)可知,,,故评估成绩服从正态分布,
所以.
在这2000名毕业生中,能参加三家公司面试的估计有人.
【题目】新型冠状病毒肺炎疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.
日期代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累计确诊人数 | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①,②对变量和的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差):经过计算得,,,,其中,.
(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;
(2)根据(1)问选定的模型求出相应的回归方程(系数均保留一位小数);
(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数作出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少.
附:回归直线的斜率和截距的最小二乘估计公式分别为:,.