题目内容
(本题满分13分)已知A,B,C是三角形ABC三内角,向量m=(-1,),
n=(cosA,sinA),且m·n=1.求角A;
60度
m·n=1,即…(4分)
。…(13分)
(本题满分13分)已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于.
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合) 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
(本题满分13分)已知函数为奇函数;
(1)求以及m的值;
(2)在给出的直角坐标系中画出的图象;
(3)若函数有三个零点,求实数k的取值范围.
(本题满分13 分)
已知函数
(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;
(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.
.(本题满分13分)已知圆C:内有一点P(2,2),过点P作直线
l交圆C于A、B两点.
(1) 当l经过圆心C时,求直线l的方程;
(2) 当弦AB被点P平分时,写出直线l的方程;
(3) 当直线l的倾斜角为45º时,求弦AB的长.
(本题满分13分)已知圆C:
(1)若平面上有两点A(1 , 0),B(-1 , 0),点P是圆C上的动点,求使 取得最小值时点P的坐标.
(2) 若是轴上的动点,分别切圆于两点
①若,求直线的方程;
②求证:直线恒过一定点.