题目内容
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201011/24/fc0be9f8.png)
x2 |
a2 |
y2 |
b2 |
1 |
2 |
3 |
(I)求椭圆的方程;
(II)过F作一条与两坐标轴都不垂直的直线l交椭圆于P、Q两点,若在x轴上存在一点N(x0,0),使得直线NP与直线NQ关于x轴对称,求x0的值.
分析:(I)设点F的坐标为(-c,0),根据离心率,可知点B的坐标为(0,
c),进而可求直线BF的斜率,根据BC⊥BF,进而求得直线BC的斜率.进而求得点C的坐标,可知圆M的圆心和半径,又根据圆M恰好与直线x+
y+3=0相切.根据圆心到直线的距离为2c,进而可求得c,根据离心率可求得b,根据b2=a2-c2求得a,最后椭圆的标准方程可得.
(II)由题意可设直线l的方程为y=k(x+1)(k≠0),设P(x1,y1),Q(x2,y2)根据直线NP与直线NQ关于x轴对称,可知kNP=-kNQ,根据点P,Q表示x0,根据直线l与椭圆相交,联立方程,根据韦达定理,可分别求得x1+x2和x1x2,进而可求得x0
3 |
3 |
(II)由题意可设直线l的方程为y=k(x+1)(k≠0),设P(x1,y1),Q(x2,y2)根据直线NP与直线NQ关于x轴对称,可知kNP=-kNQ,根据点P,Q表示x0,根据直线l与椭圆相交,联立方程,根据韦达定理,可分别求得x1+x2和x1x2,进而可求得x0
解答:解:(I)由题意可知F(-c,0)
∵e=
,∴b=
c,即B(0,
c),∴kBF=
=
又∵BC⊥BF,∴kBC=-
,
∴C(3c,0),∴圆M的圆心坐标为(c,0),半径为2c由直线x+
y+3=0与圆M相切可得
=2c,
∴c=1,∴椭圆的方程为
+
=1.
(II)由题意可设直线l的方程为y=k(x+1)(k≠0),设P(x1,y1),Q(x2,y2)
∵直线NP与直线NQ关于x轴对称,
∴kNP=-kNQ,即
=-
∴
=-
,∴x0=
∵
,∴3x2+4k2(x+1)2=12
∴(3+4k2)x2+8k2x+4k2-12=0,
∴x1+x2=-
,x1x2=
,
∴x0=
=-4
∵e=
1 |
2 |
3 |
3 |
| ||
0-(-c) |
3 |
又∵BC⊥BF,∴kBC=-
| ||
3 |
∴C(3c,0),∴圆M的圆心坐标为(c,0),半径为2c由直线x+
3 |
|c+3| | ||||
|
∴c=1,∴椭圆的方程为
x2 |
4 |
y2 |
3 |
(II)由题意可设直线l的方程为y=k(x+1)(k≠0),设P(x1,y1),Q(x2,y2)
∵直线NP与直线NQ关于x轴对称,
∴kNP=-kNQ,即
y1 |
x1-x0 |
y2 |
x2-x0 |
∴
k(x1+1) |
x1-x0 |
k(x2+1) |
x2-x0 |
x1+x2+2x1x2 |
x1+x2+2 |
∵
|
∴(3+4k2)x2+8k2x+4k2-12=0,
∴x1+x2=-
8k2 |
3+4k2 |
4k2-12 |
3+4k2 |
∴x0=
-
| ||||
2-
|
点评:本题主要考查椭圆的标准方程的问题.要能较好的解决椭圆问题,必须熟练把握好椭圆方程中的离心率、长轴、短轴、标准线等性质.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目