题目内容

精英家教网如图,以AB为直径的圆有一内接梯形ABCD,且AB∥CD.若双曲线C1以A、B为焦点,且过C、D两点,则当梯形的周长最大时,双曲线的离心率为
 
分析:设∠BAC=θ,作CE⊥AB于点E,则可表示出BC,EB,CD,进而可求得梯形的周长的表达式,根据二次函数的性质求得周长的最大值时θ的值,则AC和BC可求,进而根据双曲线的定义求得双曲线的长轴,进而利用e=
c
a
求得答案.
解答:解:设∠BAC=θ,作CE⊥AB于点E,
则BC=2Rsinθ,EB=BCcos(90°-θ)=2Rsin2θ,有CD=2R-4Rsin2θ,
梯形的周长l=AB+2BC+CD=2R+4Rsinθ+2R-4Rsin2=-4R(sinθ-
1
2
)2+5R

sinθ=
1
2
,即θ=30°时,l有最大值5R,这时,BC=R,AC=
3
R
a=
1
2
(AC-BC)=
1
2
(
3
-1)R
e=
c
a
=
3
+1

故答案为
3
+1
点评:本题主要考查了双曲线的应用,双曲线的定义.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网