题目内容
已知数列{an}的前n项和Sn和通项an满足Sn |
an-1 |
q |
q-1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当q=
1 |
4 |
1 |
3 |
(Ⅲ)设函数.f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),使
1 |
b1 |
1 |
b2 |
1 |
bn |
m |
3 |
分析:(I )由an=Sn-Sn-1=
(an-1)-
(an-1-1)知
=q,由S1=a1=
(a1-1)得a1=q,由此知an=q•qn-1=qn.
(II)由于a1+a2+…+an=
,故可证明Sn<
;
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=logqq1+2+n=
+
++
=2(1-
+
-
+
-
)所以 m≤6(1-
)由此能求出m的值.
q |
q-1 |
q |
q-1 |
an |
an-1 |
q |
q-1 |
(II)由于a1+a2+…+an=
| ||||
1-
|
1 |
3 |
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=logqq1+2+n=
n(n+1) |
2 |
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
解答:解:(I )当n≥2时,an=Sn-Sn-1=
(an-1)-
(an-1-1),∴
=q,又由S1=a1=
(a1-1)得a1=q,∴数列an是首项a1=q、公比为q的等比数列,∴an=q•qn-1=qn
(II)a1+a2+…+an=
=
(1-
)<
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=logqq1+2+n=
∴
+
++
=2(1-
+
-
+
-
),∴2(1-
)≥
即m≤6(1-
)
∵n=1时,[6(1-
)]min=3,∴m≤3,∵m是正整数,∴m的值为1,2,3
q |
q-1 |
q |
q-1 |
an |
an-1 |
q |
q-1 |
(II)a1+a2+…+an=
| ||||
1-
|
1 |
3 |
1 |
4n |
1 |
3 |
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=logqq1+2+n=
n(n+1) |
2 |
∴
1 |
b1 |
1 |
b2 |
1 |
bn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
m |
3 |
1 |
n+1 |
∵n=1时,[6(1-
1 |
n+1 |
点评:本题考查数列和不等式的综合运用,解题时要注意等比数列性质的灵活运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |