题目内容
证明以下不等式:(1)已知,,求证:;(2)若,,求证:.
见解析
解析
若求证:.
(本小题满分10分)选修4-5:不等式选讲若,且.(Ⅰ)求的最小值;(Ⅱ)是否存在,使得?并说明理由.
已知,若恒成立,则实数的取值范围
某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元满足(为常数),如果不搞促销活动,则该产品的年销售量是1万件. 已知2013年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2013年该产品的利润万元表示为年促销费用万元的函数;(2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?
某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为3200元,面粉的保管等其它费用为平均每吨每天3元,购买面粉每次需要支付运费900元。(Ⅰ)求该厂每隔多少天购买一次面粉,才能使平均每天支付的总费用最少?最少费用为多少?(Ⅱ)某提供面粉的公司规定:当一次购买面粉不少于120吨时,价格可享受9.5折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
已知,且,则的最大值为
不等式恒成立,则a的取值范围是 。
(1)求函数y=+的最大值;(2)若函数y=a+最大值为2,求正数a的值.