题目内容
8.已知数列{an}是等差数列,a3=5,a5=9(1)求数列{an}的通项公式;
(2)若数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Tn,求Tn.
分析 设数列{an}首项为a1,公差为d,
(1)由题意可得a1+2d=5,a1+4d=9;从而求通项公式即可;
(2)化简$\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}$,从而利用裂项求和法求前n项和公式即可.
解答 解:设数列{an}首项为a1,公差为d,
(1)由a3=5,a5=9得:
a1+2d=5,a1+4d=9;
解得a1=1,d=2;
∴an=2n-1;
(2)∵$\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}$,
∴${T_n}=\frac{1}{1×3}+\frac{1}{3×5}+…+\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$.
点评 本题考查了等差数列的通项公式的求法及裂项求和法的应用,属于中档题.
练习册系列答案
相关题目
3.为了解某班关注NBA是否与性别有关,对该班48人进行了问卷调查得到如下的列联表:
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为$\frac{2}{3}$
(1)请将右面的表补充完整(不用写计算过程,但要将表格画在答题纸上);
(2)判断是否有95%的把握认为关注NBA与性别有关?
下面的临界值表,供参考
关注NBA | 不关注NBA | 合计 | |
男生 | 6 | ||
女生 | 10 | ||
合计 | 48 |
(1)请将右面的表补充完整(不用写计算过程,但要将表格画在答题纸上);
(2)判断是否有95%的把握认为关注NBA与性别有关?
下面的临界值表,供参考
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 60.635 | 7.879 |
13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,直线x=$\frac{{a}^{2}}{c}$与一条渐近线交于点A,△OAF的面积为$\frac{{a}^{2}}{2}$(O为原点),则两条渐近线的夹角为( )
A. | 30° | B. | 45° | C. | 90° | D. | 60° |
20.函数f(x)=$\frac{lnx}{x}$(x>0)( )
A. | 在(0,+∞)上是减函数 | |
B. | 在(0,+∞)上是减函数 | |
C. | 在(0,e)上是增函数,在(e,+∞)上是减函数 | |
D. | 在(0,e)上是减函数,在(e,+∞)上是增函数 |