题目内容
20.设集合A={x|x2-2x-3<0},B={x|y=lnx},则A∩B=( )A. | (0,3) | B. | (0,2) | C. | (0,1) | D. | (1,2) |
分析 求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.
解答 解:由A中不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
由B中y=lnx,得到x>0,即B=(0,+∞),
则A∩B=(0,3),
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
10.在某市今年的公务员考试成绩中随机抽取500名考生的笔试成绩,按成绩分组,得到的频率分布表如下图所示.
(1)为了能选拔出最优秀的公务员,政府在笔试成绩的第3、4、5组中用分层抽样抽取12名考生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮选拔?
(2)在(1)的前提下,政府的3个下属机关决定先后用相同的方式在12名考生中随机抽取2名考生接受考官的面试,记抽取到第5组的A考生面试的下属机关的个数为x,求的分布列和期望.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 25 | 0.050 |
第2组 | [165,170) | 175 | 0.350 |
第3组 | [170,175) | 150 | |
第4组 | [175,180) | 0.200 | |
第5组 | [180,185) | 50 | 0.100 |
合计 | 500 | 1000 |
(2)在(1)的前提下,政府的3个下属机关决定先后用相同的方式在12名考生中随机抽取2名考生接受考官的面试,记抽取到第5组的A考生面试的下属机关的个数为x,求的分布列和期望.
5.△ABC中,角A,B,C的对边分别为a,b,c,B=2A,a=1,b=$\frac{4}{3}$,则△ABC一定是( )
A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 不能确定 |
12.设集合M={0,1,2,3},N={x|x2-3x+2≤0},则M∩N=( )
A. | {0} | B. | {1} | C. | {0,1} | D. | {1,2} |
7.自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段、EF段、GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.
经调查发现,堵车概率x在($\frac{2}{3}$,1)上变化,y在(0,$\frac{1}{2}$)上变化.
在不堵车的情况下.走线路甲需汽油费500元,走线路乙需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.
(1)求CD段平均堵车时间a的值.
(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.
(3)在(2)的条件下,某4名司机中走甲线路的人数记为X,求X的数学期望.
经调查发现,堵车概率x在($\frac{2}{3}$,1)上变化,y在(0,$\frac{1}{2}$)上变化.
在不堵车的情况下.走线路甲需汽油费500元,走线路乙需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.
堵车时间(单位:小时) | 频数 |
[0,1] | 8 |
(1,2] | 6 |
(2,3] | 38 |
(3,4] | 24 |
(4,5] | 24 |
(表2) |
CD段 | EF段 | GH段 | |
堵车概率 | x | y | $\frac{1}{4}$ |
平均堵车时间 (单位:小时) | a | 2 | 1 |
(表1) |
(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.
(3)在(2)的条件下,某4名司机中走甲线路的人数记为X,求X的数学期望.