题目内容
()(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,
,∠BCF=∠CEF=90°,AD=
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
(Ⅰ)略(Ⅱ) 当AB为时,二面角A-EFC的大小为60°.
解析:
本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力。
方法一:
(Ⅰ)证明:过点E作EG⊥CF并CF于G,连结DG,可得四边形BCGE为矩形。又ABCD为矩形,所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG。
因为AE平面DCF,DG平面DCF,所以AE∥平面DCF。
(Ⅱ)解:过点B作BH⊥EF交FE的延长线于H,连结AH。
由平面ABCD⊥平面BEFG,AB⊥BC,得
AB⊥平面BEFC,
从而 AH⊥EF,
所以∠AHB为二面角A-EF-C的平面角。
在Rt△EFG中,因为EG=AD=
又因为CE⊥EF,所以CF=4,
从而 BE=CG=3。
于是BH=BE·sin∠BEH=
因为AB=BH·tan∠AHB,
所以当AB为时,二面角A-EF-G的大小为60°.
方法二:
如图,以点C为坐标原点,以CB、CF和CD分别
作为x轴、y轴和z轴,建立空间直角坐标系C-xyz.
设AB=a,BE=b,CF=c,
则C(0,0,0),A(
(Ⅰ)证明:
所以
所以CB⊥平面ABE。
因为GB⊥平面DCF,所以平面ABE∥平面DCF
故AE∥平面DCF
(II)解:因为,
所以,从而
解得b=3,c=4.
所以.
设与平面AEF垂直,
则 ,
解得 .
又因为BA⊥平面BEFC,,
所以,
得到 .
所以当AB为时,二面角A-EFC的大小为60°.