题目内容

已知双曲线C的中心在坐标原点,渐近线方程是3x±2y=0,左焦点的坐标为(-
13
,0)
,A、B为双曲线C上的两个动点,满足
OA
OB
=0.
(Ⅰ)求双曲线C的方程;
(Ⅱ)求
1
|
OA
|
2
+
1
|
OB
|
2
的值;
(Ⅲ)动点P在线段AB上,满足
OP
AB
=0,求证:点P在定圆上.
分析:(Ⅰ)由题意c=
13
b
a
=
3
2
,能求出双曲线C的方程.
(Ⅱ)解法一:当过A、B两点的直线斜率存在时,设直线AB的方程为y=kx+m,由
y=kx+m
x2
4
-
y2
9
=1
(9-4k2)x2-8kmx-4m2-36=0(k≠±
3
2
)
,设A(x1,y1),B(x2,y2),由韦达定理知y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=
9m2-36k2
9-4k2
.由
OA
OB
=0
,知-
4m2+36
9-4k2
+
9m2-36k2
9-4k2
=0
,由此能导出
1
|
OA
|
2
+
1
|
OB
|
2
=
5
36
为定值;当过A,B两点的直线斜率不存在时,设直线AB的方程为x=m,则可验证
1
|
OA
|
2
+
1
|
OB
|
2
=
5
36
为定值.
解法二:设A(rcosθ,rsinθ)、B(kcosα,ksinα),则r=|
OA
|,k=|
OB
|
,点A在双曲线上,则r2(
cos2θ
4
-
sin2θ
9
)=1?
1
r2
=
cos2θ
4
-
sin2θ
9
.由
OA
OB
=0
得cos2α=sin2θ,cos2θ=sin2α,同理,
1
k2
=
cos2α
4
-
sin2α
9
=
sin2θ
4
-
cos2θ
9
.由此得
1
|
OA
|
2
+
1
|
OB
|
2
=
1
r2
+
1
k2
=
1
4
-
1
9
=
5
36
为定值.
(Ⅲ)由三角形面积公式,得|
OP
|×|
AB
|=|
OA
|×|
OB
|
,所以|
OP
|2×|
AB
|2=|
OA
|2×|
OB
|2?|
OP
|2×(|
OA
|
2
+|
OB
|
2
)=|
OA
|2×|
OB
|2
,由此能够证明点P在定圆上.
解答:解:(Ⅰ)由题意c=
13
b
a
=
3
2
,则由c2=a2+b2得a=2,b=3
所以双曲线C的方程为
x2
4
-
y2
9
=1
…(2分)
(Ⅱ)解法一:①当过A、B两点的直线斜率存在时,设直线AB的方程为y=kx+m,则
y=kx+m
x2
4
-
y2
9
=1
(9-4k2)x2-8kmx-4m2-36=0(k≠±
3
2
)
…(4分)
设A(x1,y1),B(x2,y2),则x1+x2=
8km
9-4k2
x1x2=-
4m2+36
9-4k2

y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=
9m2-36k2
9-4k2
…(5分)
OA
OB
=0
,则x1x2+y1y2=0,
-
4m2+36
9-4k2
+
9m2-36k2
9-4k2
=0

∴5m2=36(k2+1)
满足△=64k2m2+16(m2+9)(9-4k2)=64m2+117>0…(6分)
设原点O到直线AB的距离为d,
d=
|m|
1+k2
,又由|
OA
|2×|
OB
|2=d2×|
AB
|2

1
|
OA
|
2
+
1
OB
| 2
=
|
AB
|
2
|
OA
|
2
|
OB
|
2

=
(1+k2)(x1-x2)2
(x12+y12)(x22+y22)

=
(1+k2)[(x1+x2)2-4x1x2]
(
13x12
4
-9)(
13x22
4
-9)
=
k2+1
m2

1
|
OA
|
2
+
1
|
OB
|
2
=
5
36
为定值…(8分)
②当过A,B两点的直线斜率不存在时,设直线AB的方程为x=m,则可验证
1
|
OA
|
2
+
1
|
OB
|
2
=
5
36
为定值…(10分)
解法二:设A(rcosθ,rsinθ)、B(kcosα,ksinα),则r=|
OA
|,k=|
OB
|
…(4分)
点A在双曲线上,则r2(
cos2θ
4
-
sin2θ
9
)=1?
1
r2
=
cos2θ
4
-
sin2θ
9
…(6分)
OA
OB
=0
得cos2α=sin2θ,cos2θ=sin2α
同理,
1
k2
=
cos2α
4
-
sin2α
9
=
sin2θ
4
-
cos2θ
9
…(8分)
所以
1
|
OA
|
2
+
1
|
OB
|
2
=
1
r2
+
1
k2
=
1
4
-
1
9
=
5
36
为定值…(10分)
(Ⅲ)由三角形面积公式,得|
OP
|×|
AB
|=|
OA
|×|
OB
|

所以|
OP
|2×|
AB
|2=|
OA
|2×|
OB
|2?|
OP
|2×(|
OA
|
2
+|
OB
|
2
)=|
OA
|2×|
OB
|2

|
OP
|2×(
1
|
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网