题目内容
在用数学归纳法证明f(n)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/2.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/4.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/7.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/9.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_ST/11.png)
【答案】分析:根据f(n)=
+
+…+
,可知f(k)=
+…+
,f(k+1)=
+…+
,从而可得n=k到n=k+1变化了的项.
解答:解:∵f(k)=
+…+
,f(k+1)=
+…+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/10.png)
∴f(k+1)-f(k)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/11.png)
∵f(k+1)=f(k)+g(k),
∴g(k)=
故选B.
点评:本题考查数学归纳法,考查数学归纳法中的推理,确定n=k到n=k+1变化了的项是解题的关键.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/6.png)
解答:解:∵f(k)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/10.png)
∴f(k+1)-f(k)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/11.png)
∵f(k+1)=f(k)+g(k),
∴g(k)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123201019810693/SYS201310251232010198106006_DA/12.png)
故选B.
点评:本题考查数学归纳法,考查数学归纳法中的推理,确定n=k到n=k+1变化了的项是解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目