题目内容
甲、乙两位学生参加数学竞赛培训。现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据,并指出两组数据的中位数。
(2)从平均数、方差考虑,你认为哪位学生更稳定?请说明理由。
(Ⅰ) 作出茎叶图如下:
(Ⅱ)甲的成绩较稳定,派甲参赛比较合适.
解析试题分析:(1)根据所给的数据,以十位做茎,个位做叶,做出茎叶图,注意图形要做到美观,不要丢失数据.
(2)根据所给的数据做出两个人的平均数和方差,把平均数和方差进行比较,得到两个人的平均数相等,但是乙的方差大于甲的方差,得到要派甲参加.
解:(Ⅰ) 作出茎叶图如下:
(Ⅱ)派甲参赛比较合适.理由如下:
,
,
,
∵,,∴甲的成绩较稳定,派甲参赛比较合适.
考点:本试题主要考查了对于两组数据,通常要求的是这组数据的方差和平均数,用这两个特征数来表示分别表示两组数据的特征,即平均水平和稳定程度.
点评:解决该试题的关键是理解方差和平均数各自代表的含义。
(本题满分12分)
对某校高二年级学生参加社会实践活动次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社会实践活动的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
26 | n | |
| m | P |
| 1 | 0.025 |
合计 | M | 1 |
(Ⅰ)求出表中M,P及图中的值;
(Ⅱ)在所取样本中,从参加社会实践活动的次数不少于20次的学生中任选2人,求恰有一人参加社会实践活动次数在区间内的概率.
(本题满分10分)对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
24 | ||
| ||
| 2 | 0.05 |
合计 | 1 |
(Ⅰ)求出表中及图中的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
(本小题满分12分)
以下是测得的某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:
广告费支出x | 2 | 4 | 5 | 6 | 8 |
销售额y | 30 | 40 | 60 | 50 | 70 |
(2)求y关于x的回归直线方程;
(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)
某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律:
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2) 试预测加工10个零件需要多少时间?