题目内容
定义两种运算:a⊕b=
,a?b=
,则函数f(x)=
的解析式为( )
a2-b2 |
(a-b)2 |
2⊕x |
(x?2)-2 |
分析:根据中的新定义,化简得f(x)=
,由此解出函数定义域为{x|-2≤x≤2且x≠0},再将函数解析式去绝对值化简,可得本题答案.
| ||
|x-2|-2 |
解答:解:根据题意,可得
∵a⊕b=
,a?b=
,
∴2⊕x=
=
,x?2=
=|x-2|,
因此,函数f(x)=
=
,
∵
,
∴函数的定义域为{x|-2≤x≤2且x≠0}.
由此可得函数的解析式为:f(x)=
=
=-
,(x∈[-2,0)∪(0,2]).
故选:A
∵a⊕b=
a2-b2 |
(a-b)2 |
∴2⊕x=
22-x2 |
4-x2 |
(x-2)2 |
因此,函数f(x)=
2⊕x |
(x?2)-2 |
| ||
|x-2|-2 |
∵
|
∴函数的定义域为{x|-2≤x≤2且x≠0}.
由此可得函数的解析式为:f(x)=
| ||
|x-2|-2 |
| ||
(2-x)-2 |
| ||
x |
故选:A
点评:本题给出新定义域,求函数的解析式.着重考查了函数的定义域求法、不等式组的解法和求函数解析式的一般方法等知识,属于中档题.
练习册系列答案
相关题目
定义两种运算:a⊕b=a2+b2,a⊙b=ab(a,b∈R),则函数f(x)=
是( )
2⊙x |
(x⊕2)-2 |
A、奇函数 |
B、偶函数 |
C、既是奇数又是偶函数 |
D、既不是奇函数也不是偶函数 |