题目内容

若a>1,b>0,且ab+a-b=2
2
,则ab-a-b的值等于(  )
分析:由ab+a-b=2
2
,知(ab+a-b2=a2b+a-2b+2=8,故a2b+a-2b=6,所以(ab-a-b2=a2b+a-2b-2=4,由a>1,b>0,知ab-a-b>0,由此能求出ab-a-b的值.
解答:解:∵ab+a-b=2
2

∴(ab+a-b2=a2b+a-2b+2=8,
∴a2b+a-2b=6,
∴(ab-a-b2=a2b+a-2b-2=6-2=4,
∵a>1,b>0,
∴ab-a-b>0,
∴ab-a-b=2.
故选C.
点评:本题考查有理数指数幂的运算性质,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网