题目内容

已知f(x)=x3-3x,若m2-4n>0,m,n∈R,求证:“2|m|+|n|<4”是“方程[f(x)]2+mf(x)+n=0在区间(-1,1)内有两个不等的实根”的充分不必要条件.

解:由f(x)=x3-3x得f′(x)=3(x2-1),对x∈(-1,1)有f′(x)<0,故f(x)在(-1,1)上是减函数,得f(x)∈(-2,2). 

于是“方程[f(x)]2+mf(x)+n=0在区间(-1,1)内有两个不等的实根”等价于“方程g(t)=t2+mt+n=0在区间(-2,2)内有两个不等的实根”. 

所以“方程[f(x)]2+mf(x)+n=0在区间(-1,1)内有两个不等的实根”等价于

   

下面先证明充分性:由2|m|+|n|<4得|m|<4-2<<2,

且4>±2m-n,即g(±2)>0.

所以充分性成立. 

下面再证不必要性:取m=2,n=,显然满足

但是2|m|+|n|<4不成立,

即得不必要性成立.

综合以上得命题成立.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网