题目内容
【题目】已知 =( sin ,cos , =(cos ,cos ),f(x)= .
(1)若函数f(x)的最小正周期和单调递增区间;
(2)若a,b,c分别是△ABC的内角A,B,C所对的边,且a=2,(2a﹣b)cosC=ccosB, ,求c.
【答案】
(1)解: =( sin ,cos , =(cos ,cos ),
∵f(x)= = = = ,
∴f(x)的最小正周期T= =3π,
令 ,k∈Z,
得: ,
∴f(x)的单调递增区间为 (k∈Z)
(2)解:∵(2a﹣b)cosC=ccosB,
由正弦定理,得:2sinAcosC=sinBcosC+cosBsinC=sinA,
∵0<A<π,0<C<π.
∴sinA>0,
∴ ,
∴ ,
又∵ ,即 ,
∴ ,
∴ ,k∈Z,
∴ ,
正弦定理,可得:
【解析】(1)根据f(x)= .向量的运算,求出f(x)的解析式,即可求函数f(x)的最小正周期和单调递增区间.(2)利用正弦函数化简(2a﹣b)cosC=ccosB,根据 ,求出角A,正弦定理求出c.
练习册系列答案
相关题目