题目内容

已知F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|:|F1F2|:|PF2|=7:8:3,则此双曲线的离心率为(  )
分析:利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后求出双曲线的离心率.
解答:解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|:|F1F2|:|PF2|=7:8:3,
所以|F1F2|=2c,|PF1|=
7c
4
,|PF2|=
3c
4

又双曲线的定义可知
7c
4
-
3c
4
=2a

所以e=2.
故选D.
点评:本题考查双曲线的定义,双曲线的离心率的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网