题目内容
【题目】已知圆C:,直线l过定点.
(1)若直线l与圆C相切,求直线l的方程;
(2)若直线l与圆C相交于P,Q两点,求的面积的最大值,并求此时直线l的方程.
【答案】(1)或
【解析】
(1)通过直线的斜率存在与不存在两种情况,利用直线的方程与圆C相切,圆心到直线的距离等于半径即可求解直线的方程;
(2)设直线方程为,求出圆心到直线的距离、求得弦长,得到的面积的表达式,利用二次函数求出面积的最大值时的距离,然后求出直线的斜率,即可得到直线的方程.
(1)①若直线l1的斜率不存在,则直线l1:x=1,符合题意.
②若直线l1斜率存在,设直线l1的方程为,即.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,即: ,解之得 . 所求直线l1的方程是或.
(2)直线与圆相交,斜率必定存在,且不为0, 设直线方程为,
则圆心到直线l1的距离
又∵△CPQ的面积
=
∴当d=时,S取得最大值2.
∴= ∴ k=1 或k=7
所求直线l1方程为 x-y-1=0或7x-y-7=0 .
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标.将指标按照,,,,分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当时,认定该户为“亟待帮住户”.工作组又对这户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.
(1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与受教育水平不好有关:
受教育水平良好 | 受教育水平不好 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于的贫困户中,随机选取两户,用表示所选两户中“亟待帮助户”的户数,求的分布列和数学期望.
附:,其中.
【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女姓450人)中,采用分层抽样的方法从中抽取名学生进行调查.
(1)己知抽取的名学生中含男生55人,求的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附:,.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
【题目】哈市某公司为了了解用户对其产品的满意度,从南岗区随机调查了40个用户,根据用户对其产品的满意度的评分,得到用户满意度评分的频率分布表.
满意度评分分组 | |||||
频数 | 2 | 8 | 14 | 10 | 6 |
(1)在答题卡上作出南岗区用户满意度评分的频率分布直方图;
南岗区用户满意度评分的频率分布直方图
(2)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
估计南岗区用户的满意度等级为不满意的概率;
(3)求该公司满意度评分的中位数(保留小数点后两位).