题目内容

设n阶方阵
An=
1          3           5         …    2n-1
2n+1  2n+3  2n+5  …  4n-1
4n+1  4n+3  4n+5  …  6n-1
…        …         …            …       …
2n(n-1)+1  2n(n-1)+3  2n(n-1)+5  …  2n2-1

任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则Sn=x1+x2+…+xn,则
lim
n→∞
Sn
n3+1
=______.
不妨取x1=1,x2=2n+3,x3=4n+5,…,xn=2n2-1,
故Sn=1+(2n+3)+(4n+5)+…+(2n2-1)=[1+3+5+…+(2n-1)]+[2n+4n+…+(n-1)2n]=n2+(n-1)×n2=n3
lim
n→∞
Sn
n3+1
=
lim
n→∞
n3
n3+1
=
lim
n→∞
1
1+
1
n3
=1,
故答案为:1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网