题目内容

设n阶方阵
An=
任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则Sn=x1+x2+…+xn,则=   
【答案】分析:不妨取x1=1,x2=2n+3,x3=4n+5,…,xn=2n2-1,故Sn=1+(2n+3)+(4n+5)+…+(2n2-1)=n3,故可求
解答:解:不妨取x1=1,x2=2n+3,x3=4n+5,…,xn=2n2-1,
故Sn=1+(2n+3)+(4n+5)+…+(2n2-1)=[1+3+5+…+(2n-1)]+[2n+4n+…+(n-1)2n]=n2+(n-1)×n2=n3
===1,
故答案为:1.
点评:本题考查高阶矩阵和数列的极限,解题时要认真审题,仔细解答,避免不必要的错误.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网