题目内容
11.五角星魅力无穷,移动点由A处按图中数字由小到大的顺序依次运动,当第一次结束回到A处时,数字为6,按此规律无限运动,则数字2014应在( )A. | B处 | B. | C处 | C. | D处 | D. | E处 |
分析 由题意知动点P由A到B为第一次运动,B到C第二次运动,以后运动依次为C到D,D到E,E再到A,这样运动一周共需要运动5次,计算出2014中包含402个周期,得到结果.
解答 解:由题意知动点P由A到B为第一次运动,B到C第二次运动,
以后运动依次为C到D,D到E,E再到A,
这样运动一周共需要运动5次,
∵2014÷5=402…4,
即P点运动42周以后,回到D,
故选:C.
点评 本题考查函数的周期性,是一个实际问题,这种问题解决的根本是看清题意,把实际问题转化为数学问题,根据函数的周期性得到结果.
练习册系列答案
相关题目
1.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行观测研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
(Ⅰ)请根据4月7日、4月15日、4月21日三天的数据,求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,若选取的是4月1日与4月30日的两组数据作为检验数据,试问(I)中所得的线性回归方程是否可靠?
(Ⅲ)以这5天的观测数据来估计总体,在4月份任取3天,求恰有2天每100颗种子浸泡后的发芽数在[25,30]内的概率.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$;
参考数据:11×25+13×30+12×26=977,112+132+122=434.
日 期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/°C | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,若选取的是4月1日与4月30日的两组数据作为检验数据,试问(I)中所得的线性回归方程是否可靠?
(Ⅲ)以这5天的观测数据来估计总体,在4月份任取3天,求恰有2天每100颗种子浸泡后的发芽数在[25,30]内的概率.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$;
参考数据:11×25+13×30+12×26=977,112+132+122=434.
19.已知4a=$\sqrt{2}$,lgx=a,则x=( )
A. | 10 | B. | 100 | C. | $\sqrt{10}$ | D. | 10${\;}^{\frac{1}{4}}$ |