题目内容
(本小题满分12分)
已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,
(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;.
(3)若与平面
所成的角为
,求二面角
的余弦值.
【答案】
(1)证明略
(2)略
(3)
【解析】解:(1)证明:连接AF,则AF=,DF=,
又AD=2,∴DF2+AF2=AD2,
∴DF⊥AF.又PA⊥平面ABCD,
∴DF⊥PA,又PA∩AF=A,
……………4分
(2)过点E作EH∥FD交AD于点H,则EH∥平面PFD且AH=AD.
再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=AP,
∴平面EHG∥平面PFD
∴EG∥平面PFD
从而满足AG=AP的点G为所求.………………8分
⑶建立如图所示的空间直角坐标系,因为PA⊥平面ABCD ,所以是
与平面
所成的角.
又有已知得,所以
,
所以.
设平面的法向量为
,由
得,令
,解得:
.
所以.
又因为,
所以是平面
的法向量,
易得,
所以.
由图知,所求二面角的余弦值为
.……………………12分

练习册系列答案
相关题目