题目内容

【题目】观察以下各等式:

tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,

tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,

tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.

分析上述各式的共同特点,猜想出表示的一般规律,并加以证明.

【答案】见解析

【解析】

先归纳一般规律是:若A+B+C=π,则tanA+tanB+tanC=tanA·tanB·tanC.再利用正切的和差公式加以证明。

一般规律是:若A+B+C=π,

则tanA+tanB+tanC=tanA·tanB·tanC.

证明:因为tan(A+B)=

所以tanA+tanB=tan(A+B)(1-tanAtanB).

而A+B+C=π,所以A+B=π-C,

于是tanA+tanB+tanC=tan(π-C)(1-tanAtanB)+tanC=-tanC+tanAtanBtanC+tanC=tanA·tanB·tanC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网