题目内容

(本小题10分)已知在三棱锥S--ABC中,∠ACB=900,又SA⊥平面ABC,

AD⊥SC于D,求证:AD⊥平面SBC,

 

 

 

【答案】

证明:SA⊥面ABC, BC⊥面ABC,Þ BC ⊥SA;

又BC⊥AC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;

又ADÌ面SAC,∴ BC⊥AD,

又已知SC⊥AD,且BC、SC是面SBC内两相交线,∴ AD⊥面SBC。

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网