题目内容
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656480582.png)
(Ⅰ)求函数
的图像在
处的切线方程;
(Ⅱ)设实数
,求函数
在
上的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656480582.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656512561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656527358.png)
(Ⅱ)设实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656558399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656574716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656590446.png)
(1)
,(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240136566681077.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656621543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240136566681077.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656683487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656714552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656730669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656761514.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656808690.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656839195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656512561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656527358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656902672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656621543.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656933876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656948558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656980423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656995737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657026553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657026473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657058784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657073559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657026473.png)
(i)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657120459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657026473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656590446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657167904.png)
(ii)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657198583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657214611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657245974.png)
(iii)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657276532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657292631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013657026473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013656590446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240136566681077.png)
点评:典型题,切线的斜率,等于在切点的导函数值。利用导数研究函数的极值,一般遵循“求导数、求驻点、研究导数的正负、确定极值”,利用“表解法”,清晰易懂。为研究函数的极值,就参数的范围进行讨论,易于出错。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容