题目内容

【题目】,过定点A的动直线和过定点B的动直线交于点,则的最大值是________________

【答案】

【解析】

可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得PA+PB的最大值.

由题意可得A(0,0),由于直线mx﹣y﹣m+3=0,即 m(x﹣1)﹣y+3=0,显然经过定点B(1,3),

注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,

则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.

ABP=θ,则|PA|=sinθ,|PB|=cosθ.

∵|PA|≥0且|PB|≥0,可得θ∈[0,],

|PA|+|PB|=sinθ+cosθ=2[sinθ+cosθ)=2sin(θ+),

∵θ∈[0,],∴θ+∈[],∴当θ+=时,2sin(θ+)取得最大值为 2

故答案为:2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网