题目内容

设A(x1,y1),B(x2,y2)是椭圆x2+3y2=1上的两点,O为坐标原点.
(Ⅰ)设
m
=(x1
3
y1)
n
=(x2
3
y2)且
m
n
=0
OM
=cosθ•
OA
+sinθ•
OB
(θ∈R).求证:点M在椭圆上;
(Ⅱ)若
OA
OB
=0
,求|
OA
|+|
OB
|
的最小值.
分析:(Ⅰ)设M(x0,y0),根据条件
m
=(x1
3
y1 ),
n
=(x2
3
y2)且
m
n
=0
OM
=cosθ•
OA
+sinθ•
OB
可求得x02+3y02=1,从而可证得结论;
(Ⅱ)设|OA|=p,|OB|=q,∠xOA=α,可求得A,B两点的坐标,代入x2+3y2=1,可整理得
1
p2
+
1
q2
=4
,应用基本不等式可求得pq≥
1
2
,从而|OA|+|OB|=p+q≥2
pq
,问题解决.
解答:证明:(Ⅰ)∵
m
=(x1
3
y1),
n
=(x2
3
y2)且
m
n
=0

∴x1x2+3y1y2=0,
OM
=cosθ•
OA
+sinθ•
OB

设M(x0,y0),则(x0,y0)=(x1cosθ,y1cosθ)+(x2sinθ,y2sinθ)=(x1cosθ+x2sinθ,y1cosθ+y2sinθ),
则x02+3y02=(x1cosθ+x2sinθ)2+3(y1cosθ+y2sinθ)2=(x12+3y12)cos2θ+(x22+3y22)sin2θ+2sinθcosθ(x1x2+3y1y2
∵A(x1,y1),B(x2,y2)是椭圆x2+3y2=1上的两点,
∴x12+3y12=1,x22+3y22=1,又x1x2+3y1y2=0,
∴(x12+3y12)cos2θ+(x22+3y22)sin2θ+2sinθcosθ(x1x2+3y1y2)=cos2θ+sin2θ=1.故点M在椭圆上.
(Ⅱ)设|OA|=p,|OB|=q,∠xOA=α,
A(pcosα,psinα),B(qcos(
π
2
+α),qsin(
π
2
+α))

p2cos2α+3p2sin2α=1
q2cos2(
π
2
+α)+3q2sin2(
π
2
+α)=1
cos2α+3sin2α=
1
p2
sin2α+3cos2α=
1
q2

从而
1
p2
+
1
q2
=4

p2+q2=4p2q2≥2pq,pq≥
1
2

|OA|+|OB|=p+q≥2
pq
2

|
OA
|+|
OB
|
的最小值为
2
点评:本题考查椭圆的参数方程,难点在于解题思路的突破及基本不等式的灵活运用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网