题目内容
设A(x1,y1),B(x2,y2)是椭圆x2+3y2=1上的两点,O为坐标原点.
(Ⅰ)设
=(x1,
y1),
=(x2,
y2)且
•
=0,
=cosθ•
+sinθ•
(θ∈R).求证:点M在椭圆上;
(Ⅱ)若
•
=0,求|
|+|
|的最小值.
(Ⅰ)设
m |
3 |
n |
3 |
m |
n |
OM |
OA |
OB |
(Ⅱ)若
OA |
OB |
OA |
OB |
分析:(Ⅰ)设M(x0,y0),根据条件
=(x1,
y1 ),
=(x2,
y2)且
•
=0,
=cosθ•
+sinθ•
可求得x02+3y02=1,从而可证得结论;
(Ⅱ)设|OA|=p,|OB|=q,∠xOA=α,可求得A,B两点的坐标,代入x2+3y2=1,可整理得
+
=4,应用基本不等式可求得pq≥
,从而|OA|+|OB|=p+q≥2
,问题解决.
m |
3 |
n |
3 |
m |
n |
OM |
OA |
OB |
(Ⅱ)设|OA|=p,|OB|=q,∠xOA=α,可求得A,B两点的坐标,代入x2+3y2=1,可整理得
1 |
p2 |
1 |
q2 |
1 |
2 |
pq |
解答:证明:(Ⅰ)∵
=(x1,
y1),
=(x2,
y2)且
•
=0,
∴x1x2+3y1y2=0,
又
=cosθ•
+sinθ•
,
设M(x0,y0),则(x0,y0)=(x1cosθ,y1cosθ)+(x2sinθ,y2sinθ)=(x1cosθ+x2sinθ,y1cosθ+y2sinθ),
则x02+3y02=(x1cosθ+x2sinθ)2+3(y1cosθ+y2sinθ)2=(x12+3y12)cos2θ+(x22+3y22)sin2θ+2sinθcosθ(x1x2+3y1y2)
∵A(x1,y1),B(x2,y2)是椭圆x2+3y2=1上的两点,
∴x12+3y12=1,x22+3y22=1,又x1x2+3y1y2=0,
∴(x12+3y12)cos2θ+(x22+3y22)sin2θ+2sinθcosθ(x1x2+3y1y2)=cos2θ+sin2θ=1.故点M在椭圆上.
(Ⅱ)设|OA|=p,|OB|=q,∠xOA=α,
则A(pcosα,psinα),B(qcos(
+α),qsin(
+α))
则
即
从而
+
=4,
故p2+q2=4p2q2≥2pq,pq≥
.
∴|OA|+|OB|=p+q≥2
≥
.
|
|+|
|的最小值为
.
m |
3 |
n |
3 |
m |
n |
∴x1x2+3y1y2=0,
又
OM |
OA |
OB |
设M(x0,y0),则(x0,y0)=(x1cosθ,y1cosθ)+(x2sinθ,y2sinθ)=(x1cosθ+x2sinθ,y1cosθ+y2sinθ),
则x02+3y02=(x1cosθ+x2sinθ)2+3(y1cosθ+y2sinθ)2=(x12+3y12)cos2θ+(x22+3y22)sin2θ+2sinθcosθ(x1x2+3y1y2)
∵A(x1,y1),B(x2,y2)是椭圆x2+3y2=1上的两点,
∴x12+3y12=1,x22+3y22=1,又x1x2+3y1y2=0,
∴(x12+3y12)cos2θ+(x22+3y22)sin2θ+2sinθcosθ(x1x2+3y1y2)=cos2θ+sin2θ=1.故点M在椭圆上.
(Ⅱ)设|OA|=p,|OB|=q,∠xOA=α,
则A(pcosα,psinα),B(qcos(
π |
2 |
π |
2 |
则
|
|
从而
1 |
p2 |
1 |
q2 |
故p2+q2=4p2q2≥2pq,pq≥
1 |
2 |
∴|OA|+|OB|=p+q≥2
pq |
2 |
|
OA |
OB |
2 |
点评:本题考查椭圆的参数方程,难点在于解题思路的突破及基本不等式的灵活运用,属于难题.
练习册系列答案
相关题目