题目内容

已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n

(1)若f(x)=1,求cos(x)的值;

(2)在△ABC中,角ABC的对边分别是abc且满足acosCcb,求函数f(B)的取值范围.

答案:
解析:

  解:(1)∵f(x)=m·nsincos+cos2sincos=sin()+

  而f(x)=1,∴sin()=.(4分)

  ∴cos(x)=cos2()=1-2sin2()=.(6分)

  (2)∵acosCcb,∴a·cb,即b2c2a2bc,∴cosA

  又∵A∈(0,π),∴A.(10分)

  又∵0<B,∴

  ∴f(B)∈(1,).(12分)


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网